# Integration of acrylate polymer in sol-gel silica depending on their molecular weight

#### Anthony Maçon<sup>1</sup>

<sup>1</sup>Imperial College of London, UK

Confidential :)



Aims and Objectives

#### 2 Polymer synthesis and characterisation



#### introduction

Acrylate polymer can have different chemical properties and architecture



Integration of synthetic polymer in sol gel silica

#### Aim

How cross linking acrylate polymers are integrated in the silica matrix depending on their molecular weight

#### objectives

- Use the Regulated free radical polymerization
- Characterised the polymerisation reaction
- Characterise the hybrid



| Tageted M <sub>w</sub> | DP <sub>ni</sub> | R <sub>0</sub> (x10 <sup>-3</sup> ) |
|------------------------|------------------|-------------------------------------|
| 30kDa                  | 120              | 8.3                                 |
| 15kDa                  | 60               | 16.6                                |
| 7.5kDa                 | 30               | 33.1                                |
| 2.5KDa                 | 10               | 99.4                                |

$$\begin{array}{l} C_{monomer} = 1 \, \text{mol}.L^{-1} \\ C_0 = \frac{n_{initiator}}{n_{monomer}} = 1.5\% \\ R_0 = \frac{n_{CTA}}{n_{monomer}} = \textit{variable} \\ T_0 = \frac{n_{trioxane}}{n_{monomer}} = 5\% \end{array}$$

Anthony Maçon (PhD)

Integration of synthetic polymer in sol gel silica



$$\left(\frac{1}{\overline{DP}_n}\right)_i = C_T \frac{[T]}{[M]} = \frac{d[T]}{d[M]}$$

#### **Chemical Structure : NMR**



#### **Chemical Structure : NMR**



An increase of the tacticity of the polymer is observed with the increase of the molecular weight.





#### Synthesis method : Inorganic weight percent

The mass of the polymer m<sub>Poly</sub> is known. The mass of TEOS, m<sub>TEOS</sub>, used, is calculated to get a final Inorganic weight percent of I<sub>w</sub>.





1 mol of TEOS gives 1 mol of SiO<sub>2</sub> and 1 mol of polymer gives 1 mol of SiO<sub>1.5</sub>

Anthony Maçon (PhD) Integration of synthetic polymer in sol gel silica Sol gel

The classical definition of the R ratio can't be used in the study. Network precursors are also introduced by the polymer which counts only 3 alkoxy groups where TEOS has 4. Therefore, H<sub>2</sub>O and the catalyst are introduced relatively to the number of mole of alkoxy group.

#### Ratio definition

$$\begin{array}{l} n_{Alkoxy} = 3.n_{Polymer} + 4.n_{TEOS} \\ R_{H_2O} = \frac{n_{H_2O}}{n_{Alkoxy}} ; R_{Catalyst} = \frac{n_{Catalyst}}{n_{Alkoxy}} ; R_{EtOH} = \frac{n_{EtOH}}{n_{Alkoxy}} \end{array}$$

| Table : Reagent which is needed for 1g of polymer and R <sub>H2D</sub> =1, R <sub>Catalyst</sub> =0.01 | , R <sub>EtOH</sub> =1 |
|--------------------------------------------------------------------------------------------------------|------------------------|
|--------------------------------------------------------------------------------------------------------|------------------------|

| Reagent          | $M_W$ (g.mol <sup>-1</sup> ) | D (g.mL <sup>-1</sup> ) | n (mmol) | V (mL) |
|------------------|------------------------------|-------------------------|----------|--------|
| Ethanol          | 46.07                        | 0.789                   | 32.2     | 1.88   |
| H <sub>2</sub> O | 18.01                        | 1                       | 14.3     | 0.258  |
| HCL              | 1M                           | 1                       | 0.32     | 0.322  |
| TEOS             | 208.33                       | 0.933                   | 5        | 1.123  |
| Alkoxy group     | -                            | -                       | 32.2     | -      |



#### Thermoanalysis



|     | Composition | TGA                             | DSC                               | Residual mass |
|-----|-------------|---------------------------------|-----------------------------------|---------------|
|     |             | inflection pt ( <sup>0</sup> C) | exothermic peaks( <sup>o</sup> C) | (%)           |
|     | 2.5kDa      | 366.8                           | 377.2 &394.5                      | 28.9          |
| 129 | 7.5kDa      | 368.8                           | 313.8 & 365                       | 31.6          |
|     | 15kDa       | 363.2                           | 302.7 & 368.2                     | 29.5          |
|     | 2.5kDa      | 349.3                           | 359 & 377.5                       | 48.5          |
| 150 | 7.5kDa      | 336.4                           | 310.9 & 336.4                     | 50.7          |
|     | 15kDa       | 302.1                           | 296.2 & 315.1                     | 52.5          |



#### Nonoindentation using berckvich indenter.



Thanks for your attention



## Silica – polysaccharide hybrids for bone tissue regeneration

Intra-European Fellowship for career development (IEF) - Marie Curie

Yuliya Vueva

**Sol-gel meeting** 

18<sup>th</sup> April 2013



**IEF Marie Curie – HABER** 

## **Objectives**

The aim of the project is to create new bioactive porous hybrid scaffolds that fulfil all the criteria of a scaffold for bone regeneration

#### Preparation and characterization of hybrids by incorporating in the sol-gel process natural polysaccharide polymers

(Carrageenans, Alginates, Celluloses)

haturally occurring, biodegradable, nontoxic

- L→ used in the food industry and in medic, in the field of drug delivery
  - provide an alternative and novel method for introducing calcium into the hybrids

The principle challenge will be to produce hybrid materials with covalent bond between the organic (polysaccharide) and inorganic (silica) part of the hybrid with controllable degradation and mechanical properties matching the host bone

### Imperial College London

## IEF Marie Curie – HABER

## **Carrageenans**

## Interesting for hybrids application

- Iota-carrageenan produces soft and elastic gels
- Carrageenans are anionic polyelectrolytes which gives the posibility of Ca<sup>2+</sup> to be incorporated in the hybrid network

### **Carrageenan Issues**

- Solubility problems -soluble only in water at 70°C; depending on the molecular weight; 10 mg/ml maximum
- Viscosity of solution
- difficult to obtain homogenous gels
- Modification with Si coupling agents is difficult due to the solubility issues
- modification with GPTMS could be performed only in heterogenous conditions
- the resultant product is insoluble

*Carrageenans are sulphated linear polysaccharides of D-galactose and 3,6anhydro-D-galactose extracted from certain red seaweeds* 



SIMS



## Imperial College London

## Hybrids with alginates



- Anionic polysaccharides derived from seaweeds
- $\bullet$  In presence of Ca^{2+} form gels crosslinked by complexation with Ca^{2+}
- Contain carboxylic functional groups
  -Good potential for modification
- Potential to produce hybrids with double crosslinking (chemical and physical ionic crosslinking)



Crosslinking of alginate with  $\mbox{Ca}^{2+}$ 



### **IEF Marie Curie – HABER**

# **Alginate modification with GPTMS**



 $RSH > RNH_2 > R_2NH > RCOOH > SiOH >> ROH > H_2O$ 

Relative reaction rates of different functional groups toward epoxy groups



**Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis**, Luca Gabrielli, Laura Russo, Ana Poveda, Julian R. Jones, et. **DOI: 10.1002/chem.200** 



## HSQC of functionalised with GPTMS Alginate



### **IEF Marie Curie – HABER**

## **Issues and conclusions**

 $\bullet$  Polymer concentration is not high enough to achieve suitable  $^1\text{H}$  and  $^{13}\text{C}$  NMR signals

• This is not clear if the covalent linkages are lost in the background along with the polymer signal or is no covalent coupling occurring

• The epoxy ring is not fully opened during fictionalisation of alginate at pH 5. The main compounds detected are diol, dioxane and PEO.

## **IEF Marie Curie – HABER**

# **Dissolution study of alginate-silica hybrids**

## **Dissolution study in Tris**





- No alginate after 4 weeks in TRIS for the sample without GPTMS
- The samples coupled with GPTMS showed very weak bands corresponding to carboxylic groups of alginate
- Most of the polymer had dissolved after 4 weeks in Tris



# **Modification of Alginate with APTES**

Reaction utilizing carbodiimide chemistry



## **ATR-FTIR of alginate modified with APTES**

Preliminary study of the reaction of APTES with Alginate



pH = 6

Formation of amide bond

After dialysis of Alginate-APTES solutions the APTES is still present in the solution. – Functionalised Alginate



## **Further work**

- *Optimization of reaction conditions for modification of Alginate with APTES*
- Evaluation of substitution degree by ICP and NMR
- Optimization Alginate-silica hybrid synthesis